ZESZYTY NAUKOWE UNIWERSYTETU SZCZECIŃSKIEGO

NR 766 FINANSE, RYNKI FINANSOWE, UBEZPIECZENIA NR 62
2013

GIUSEPPE CARISTI
ERSILIA SAITTA

AGAIN ON PARETO MINIMUM POINTS OF AN INCONSISTENT SYSTEM

Keywords: Pareto minimum
Słowa kluczowe: minimum Pareto
JEL classyfication: B23

Introduction

Following ${ }^{1}$ let consider the following system of m equations and n unknowns:

$$
\begin{equation*}
f_{k}(z)=\sum_{j=1}^{n} a_{k j} z-b_{j}=0, \quad k \in M=\{1,2, \ldots, m\} \tag{1}
\end{equation*}
$$

or, equivalently,

$$
A z-b=0
$$

where the notations are obvious:

$$
A=\left(a^{k}\right)_{k=1,2, \ldots, m}:=\left(a_{k 1}, a_{k 2} \ldots, a_{k n}\right)_{k=1,2, \ldots, m} \in \mathrm{M}_{m, n}(\mathrm{C}), \quad b=\left(b_{1}, b_{2}, \ldots b_{m}\right) \in \mathrm{M}_{m, 1}(\mathrm{C})
$$

and

$$
z=\left(z_{1}, z_{2}, \ldots, z_{n}\right) \in \mathrm{M}_{n, 1}(\mathrm{C}) \quad\left(\text { here } a^{k}:=\left(a_{k 1}, a_{k 2}, \ldots, a_{k n}\right)\right) .
$$

Definition 1.1. $z \in \mathrm{C}^{n}$ is an infrasolution of the system (1) if there is no $u \in \mathrm{C}^{n}$ so that:

- $A u \neq A z$
- If, for $k \in M, f_{k}(z)=0$, then $f_{k}(u)=0$
- If, for $k \in M, f_{k}(z) \neq 0$, then $\left|f_{k}(u)\right|<\left|f_{k}(z)\right|$

Let us denote the set of all infrasolutions of (1) by $\operatorname{IS}(A, b)$

[^0]Lemma 1.1. System (1) is consistent if and only if every solution z of the system is also an infrasolution, i.e. $\operatorname{IS}(A, b)$ coincides with the set of all solutions of (1).

Definition 1.2. $z \in \mathrm{C}^{n}$ is a Pareto minimum solution or Pareto minimum point of the system (1) if there is no $u \in \mathrm{C}^{n}$ such that:

- $\left|f_{k}(u)\right| \leq\left|f_{k}(z)\right|$ for all $k \in M$;
- There is a $k_{0} \in M$ so that $\left|f_{k_{0}}(u)\right|<\left|f_{k_{0}}(z)\right|$.

Definition 1.3. $z \in \mathrm{C}^{n}$ is called a weak Pareto minimum solution of the system (1) if there is no $u \in \mathrm{C}^{n}$ such that $\left|f_{k}(u)\right|<\left|f_{k}(z)\right|$ for all $k \in M$.

We denote by $\mathrm{P} A(A, b)$, and, respectively by $\mathrm{P} A^{*}(A, b)$ the sets of all Pareto minimum solutions, respectively for all weak Pareto minimum solutions of the system (1).

Definition 1.4. An approximate solution $z_{0} \in \mathrm{C}^{n}$ of the system (1) is called Tschebychev uniform best approximation solution of (1), or a Tschebychev's point for the system (1) if

$$
\begin{equation*}
\max _{k \in M}\left\{\left\{f_{k}\left(z_{0}\right)\right\}=\inf _{z \in C^{n}} \max _{k \in M}\left\{\left\{f_{k}(z)\right\}\right.\right. \tag{2}
\end{equation*}
$$

Definition 1.5. Let now $\left(\lambda_{k}\right)^{n}$ be a system of weights, so that $\lambda_{k}>0, \sum_{k=1}^{n} \lambda_{k}=1$ and let also $p>0$. An approximate solution $z^{*} \in \mathrm{C}^{n}$ of the system (1) is called solution of the least deviaton from 0 in weighted mean of order p of (1), if

$$
\begin{equation*}
\left(\sum_{k=1}^{n} \lambda_{k}\left|f_{k}\left(z^{*}\right)\right|^{p}\right)^{1 / p}=\inf _{z \in \mathrm{C}^{n}}\left(\sum_{k=1}^{n} \lambda_{k}\left|f_{k}(z)\right|^{p}\right)^{1 / p} \tag{3}
\end{equation*}
$$

In a particular case when $p=2$ and $\lambda_{k}=1 / n$ for all $k \in M$, the solution of the least deviation from 0 of the system (1) is called the least squares solution of the system (1).

Definition 1.6. A matrix $A \in \mathrm{M}_{m, n}(\mathrm{C}), m \geq n$ is said to have the " H-property" (Haar property) if all quadratic submatrices of A of order n have exactly rank n.

Lemma 1.2. If $z_{0} \in \mathrm{C}^{n}$ and $A \in \mathrm{M}_{m, n}, m \geq n$ and A has the H-property and if there exist $l \geq n$ and $k_{1}, k_{2}, \ldots, k_{l} \in M$ so that

$$
f_{k_{j}}\left(z_{0}\right)=0, \quad \text { for } \quad j=1,2, \ldots, l,
$$

then $z_{0} \in \mathrm{P} A(A, b)$.
Definition 1.7. Let us denote by $\mathrm{I} S_{0}(A, b), \mathrm{P} A_{0}(A, b)$ and, respectively $\mathrm{P} A_{0}^{*}(A, b)$ the subsets of infrasolutions, Pareto minimum solutions, respectively weak Pareto minimum solutions z of system (1), for which $f_{k}(z) \neq 0$ for all $k \in M$.

Theorem 1.1. Between the three classes defined above, we have the following inclusions:

$$
\mathrm{P} A(A, b) \subset \mathrm{I} S(A, b) \subset \mathrm{P} A^{*}(A, b) .
$$

Definition 1.8. Let $X \subset \mathrm{C}^{n}$ and $f: X \rightarrow R^{m}, g: X \rightarrow R^{p}$
and let $\Omega=\{x \in X: g(x) \leq 0\} \neq \Phi$. x_{0} is called a Pareto minimum point off on Ω (or Pareto minimum solution) of the problem:

$$
f(x) \rightarrow \min ,
$$

under the condition:

$$
g(x) \leq 0
$$

if there is no $x \in \Omega$ such that

$$
f(x) \leq f\left(x_{0}\right), \quad f(x) \neq f\left(x_{0}\right),
$$

(Here, the inequalities mean inequalities between the similar real components of f, respectively g).

In [1] we proved some results concerning these classes. In what follows we will need the following theorems:

Theorem 1.2. ([1]) If $z^{*} \in \mathrm{C}^{n}$ is a solution of the least deviation from 0 in weighted mean of order p of the system (1), then z^{*} is a Pareto minimum solution of (1), i.e. $z^{*} \in \mathrm{P} A(A, b)$.

Theorem 1.3. ([1]) Let $A \in \mathrm{M}_{m, n}(\mathrm{C})$ and $b \in \mathrm{C}^{n}$. Then $z_{0} \in \mathrm{P} A_{0}(A, b)$ if and only if there exist p functions $f_{k_{1}}, f_{k_{2}}, \ldots, f_{k_{p}}(2 \leq p \leq 2 n+1)$ and p positive numbers λ_{v} with $\sum_{n u=1}^{p} \lambda_{v}=1$ so that

$$
\sum_{v=1}^{p} \lambda_{v} \frac{a_{k_{v} j}}{f_{k_{v}}\left(z_{0}\right)}=0, \quad j \in\{1,2, \ldots, n\}
$$

If $z_{0} \in \operatorname{IS}(A, b)$, then $z_{0} \in \operatorname{IS} S_{0}(B, c)$, where

$$
B=\left(a^{k_{1}} a^{k_{2}} \ldots a^{k_{p}}\right)^{t}, \quad c=\left(b_{k_{1}} b_{k_{2}} \ldots b_{k_{p}}\right)^{t}
$$

Corolarry 1.1. ([1]) With the notations and conditions of Theorem 1.3, if A has the " $H_{\text {_property", }}$ then number p in Theorem $\mathbf{1 . 3}$ satisfies the inequality $n+1 \leq p \leq 2 n+1$ and if A is a matrix with real elements, then $p=n+1$.

Main results

Lemma 2.1. Let A be a matrix of order $m \mathrm{x} n$ with complex elements. Let

$$
B=\left(a^{k_{1}} a^{k_{2}} \ldots a^{k_{p}}\right)^{t}
$$

be a submatrix of A having the order $p \mathrm{x} n, p \geq n$. If A has the " H-property", then $\mathrm{P} A(B, c) \subseteq \mathrm{P} A(A, b)\left(c=\left(b_{k_{1}} b_{k_{2}} \ldots b_{k_{p}}\right)^{t}\right)$.

Proof. Let $z_{0} \in \mathrm{P} A(B, c)$ and assume that $z_{0} \notin \mathrm{P} A(A, b)$. Then, we can find $u \in \mathrm{C}^{n}$ so that:

$$
\left|f_{k}(u)\right| \leq\left|f_{k}\left(z_{0}\right)\right| \quad \text { forall } k \in M
$$

and it exists $k_{0} \in M$ so that

$$
\begin{equation*}
\left|f_{k_{0}}(u)\right|<\left|f_{k_{0}}\left(z_{0}\right)\right| \tag{4}
\end{equation*}
$$

From the first inequality we have that $\left|f_{k}(u)\right| \leq\left|f_{k}\left(z_{0}\right)\right|$ for all $k \in\left\{k_{1}, k_{2}, \ldots, k_{p}\right\}$. If there were a $k^{\prime} \in\left\{k_{1}, k_{2}, \ldots, k_{p}\right\}$ such that $\left|f_{k^{\prime}}(u)\right|<\left|f_{k^{\prime}}\left(z_{0}\right)\right|, z_{0}$ would not be in $\operatorname{PA}(B, c)$ and this is a contradiction. It follows that for every $k \in\left\{k_{1}, k_{2}, \ldots, k_{p}\right\}$ we have $\left|f_{k}(u)\right|=\left|f_{k}\left(z_{0}\right)\right|$.

Let now consider $v=\left(u+z_{0}\right) / 2$.

$$
\begin{aligned}
& \left|f_{k}(v)\right|=\left|a^{k} v-b_{k}\right|=\left|\frac{a^{k} u+a^{k} z_{0}}{2}-b_{k}\right|=\frac{1}{2}\left|\left(a^{k} u-b_{k}\right)+\left(a^{k} z_{0}-b_{k}\right)\right| \leq \\
& \leq \frac{1}{2}\left(\left|a^{k} u-b_{k}\right|+\left|a^{k} z_{0}-b_{k}\right|\right) \leq \frac{1}{2} 2\left|a^{k} z_{0}-b_{k}\right|=f_{k}\left(z_{0}\right) \quad \text { forallk } \in M
\end{aligned}
$$

It follows that $\left|f_{k}(v)\right|=\left|f_{k}\left(z_{0}\right)\right|$ for each $k \in\left\{k_{1}, k_{2}, \ldots, k_{p}\right\}$. This means that $\left(a^{k}\right) v=\left(a^{k}\right) z_{0}$ for all $k \in\left\{k_{1}, k_{2}, \ldots, k_{p}\right\}$. Because $p \geq n$ and B has the " H-property", the last equalities show that $u=z_{0}$, contradicting (4). Hence, we have that $z_{0} \in \mathrm{P} A(A, b)$.

Theorem 2.1. Let $A \in \mathrm{M}_{m, n}(\mathrm{C})$ and $b \in \mathrm{C}^{n}$. (i)If $z_{0} \in \mathrm{P} A_{0}(A, b)$, then we can find p functions $f_{k_{1}}, f_{k_{2}}, \ldots, f_{k_{p}}$ and p positive numbers v_{λ} with $\sum_{v=1}^{p}=1$ so that

$$
\begin{equation*}
\sum_{v=1}^{p} \lambda_{v} \frac{a_{k_{v} j}}{f_{k_{v}}\left(z_{0}\right)}=0, \quad j \in\{1,2, \ldots, n\} \tag{5}
\end{equation*}
$$

(ii) If matrix A has the " H-property", then conditions (5) are sufficient for $z_{0} \in \operatorname{P} A_{0}(A, b)$ and $n+1 \leq p \leq 2 n+1$.
(iii) If A is like in (ii) and real, then $p=n+1$.

Proof. The conclusions are simple applications of Theorem 1.3 and also of Lemma
2.1.

Remark 2.1. In the conditions of Theorem 2.1, we have:

$$
\begin{equation*}
\sum_{v=1}^{p} \lambda_{v} \frac{b_{k_{v}}}{f_{k_{v}}\left(z_{0}\right)}=-1 \tag{6}
\end{equation*}
$$

Proof. By multiplying (5) by z_{0}, j and by adding term by term the corresponding relations $(j=1,2, \ldots, n)$, we obtain:

$$
\sum_{v=1}^{p} \lambda_{v} \frac{\sum_{j=1}^{n} a_{k_{v}} z_{0, j}}{f_{k_{v}}\left(z_{0}\right)}=0
$$

Relation (6) follows immediately from the above equality, taking into account that $\sum_{k=1}^{n} a_{k_{V} j} z_{0, j}=f_{k_{V}}\left(z_{0}\right)+b_{k}$ and $\sum_{v=1}^{p} \lambda_{v}=1$.

Let us now make the following notations: consider (without any loss of generality) that indices $k_{1}, k_{2}, \ldots, k_{p}$ in Theorem 2.1 are the first p indices $1,2, \ldots, p$ and thus condition (5) becomes

$$
\begin{equation*}
\sum_{k=1}^{p} \lambda_{k} \frac{a_{k j}}{f_{k}\left(z_{0}\right)}, j=1,2, \ldots, n, \lambda_{k}>0, \quad \sum_{k=1}^{p} \lambda_{k}=1 \tag{7}
\end{equation*}
$$

Denoting $d_{k}=\lambda_{k} /\left|f_{k}\left(z_{0}\right)\right|^{2}$, system (6) can be written as:

$$
\begin{equation*}
\sum_{k=1}^{p} d_{k} f_{k}\left(z_{0}\right) \bar{a}_{k, j}, \quad j=1,2, \ldots, n \tag{8}
\end{equation*}
$$

Let us now denote:

$$
\begin{gathered}
D_{j l}=\sum_{k=1}^{p} d_{k} a_{i l} \bar{a}_{k j}, \\
D_{j}=\sum_{d_{k} b_{k} \bar{a}_{k j}}
\end{gathered}
$$

We can rewrite the system (7) in the form:

$$
\begin{equation*}
D_{j 1} z_{1}+D_{j 2} z_{2}+\cdots+D_{k n} z_{n}=D_{j}, \quad j=1,2, \ldots, n \tag{9}
\end{equation*}
$$

Using the method in [3] we can easily write the solution of the system (8) in the following way:

Theorem 2.2. Let (1) be an inconsistent system for which matrix A has the " H-property". An approximate solution $z_{0} \in \mathrm{C}^{n}$ with $f_{k}\left(z_{0} \neq 0 k \in M\right.$ of this system is a Pareto minimal solution of (1) if and only if there exists a subsystem of (1) with p equations $(n+1 \leq p \leq 2 n+1)$ (we assume that $f_{k}(z)=0 k=1,2, \ldots, p$) and there exist also p positive numbers d_{k} such that:

$$
\begin{equation*}
z_{0 k}=\frac{\sum d_{k_{1}} d_{k_{2}} \ldots d_{k_{n}} \bar{D}\left(k_{1}, k_{2}, \ldots, k_{n} ; A\right) D\left(k_{1}, k_{2}, \ldots, k_{n} ; A ; b\right)}{\sum d_{k_{1}} d_{k_{2}} \ldots d_{k_{n}}\left|D\left(k_{1}, k_{2}, \ldots, k_{n} ; A\right)\right|^{2}} \tag{10}
\end{equation*}
$$

where:

$$
D\left(k_{1}, k_{2}, \ldots, k_{n} ; A\right):=\left|\begin{array}{cccc}
a_{k_{1} 1} & a_{k_{1} 2} & \ldots & a_{k_{1} n} \\
a_{k_{2} 1} & a_{k_{2} 2} & \ldots & a_{k_{2} n} \\
\vdots & \vdots & \vdots & \vdots \\
a_{k_{n} 1} & a_{k_{n} 2} & \ldots & a_{k_{n} n}
\end{array}\right|
$$

and $D\left(k_{1}, k_{2}, \ldots, k_{n} ; A ; b\right)$ is the determinant obtained from $D\left(k_{1}, k_{2}, \ldots, k_{n} ; A\right)$ by replacing the column $\left(a_{k_{1} j} a_{k_{2} j} \ldots a_{k_{n} j}\right)^{t}$ with $\left(b_{k_{1}} b_{k_{2}} \ldots b_{k_{n}}\right)^{t} . \bar{D}\left(k_{1}, k_{2}, \ldots, k_{n} ; A\right)$ is the complex conjugate of $D\left(k_{1}, k_{2}, \ldots, k_{n} ; A\right)$ and the sum Σ is taken for all the values of $k_{1}, k_{2}, \ldots, k_{n}$ in the set $\{1,2$, ..., $p\}$.

If matrix A is real (i.e. the system is real) and has the " H-property", by Corolarry 1.1 we have that $p=n+1$ and, hence, relations (10) becomes (for $j=1,2, \ldots, n$):

$$
\begin{equation*}
z_{0 j}:=x_{0 j}=\frac{\sum_{k=1}^{n+1} d_{1} d_{2} \ldots d_{n+1} D_{k}(A) D_{k j}(A ; b)}{\sum_{k=1}^{n+1} d_{1} \ldots d_{k-1} d_{k+1} \ldots d_{n+1}|D(A)|^{2}} \tag{11}
\end{equation*}
$$

where

$$
D_{k}(A)=\left|\begin{array}{cccc}
a_{k_{1} 1} & a_{k_{1} 2} & \ldots & a_{k_{1} n} \\
\vdots & \vdots & \vdots & \vdots \\
a_{k-1,1} & a_{k-1,2} & \ldots & a_{k-1, n} \\
a_{k+1,1} & a_{k+1,2} & \ldots & a_{k+1, n} \\
\vdots & \vdots & \vdots & \vdots \\
a_{n+1,1} & a_{n+1,2} & \ldots & a_{n+1, n} \\
& & &
\end{array}\right|
$$

and $D_{k j}(A ; b)$ is obtained in the same way as above.
Equalities (10) can be written in a more simple form as:

$$
\begin{equation*}
z_{0 j}=\sum \Lambda_{k_{1} k_{2} \ldots k_{n}} \frac{D_{j}\left(k_{1}, k_{2}, \ldots, k_{n} ; A ; b\right)}{D\left(k_{1}, k_{2}, \ldots, k_{n} ; A\right)}, \quad j=1,2, \ldots, n \tag{12}
\end{equation*}
$$

and

$$
\Lambda_{k_{1} k_{2} \ldots k_{n}}=\frac{d_{k_{1}} d_{k_{2}} \ldots d_{k_{n}}\left|D\left(k_{1}, k_{2}, \ldots, k_{n} ; A\right)\right|^{2}}{\sum d_{k_{1}} d_{k_{2}} \ldots d_{k_{n}}\left|D\left(k_{1}, k_{2}, \ldots, k_{n} ; A\right)\right|^{2}}
$$

We see that $\Lambda_{k_{1} k_{2} \ldots k_{n}}>0$ and $\sum_{k=1}^{n+1} \Lambda_{k_{1} k_{2} \ldots k_{n}}=1$ and in the real case equalities (11) can be rewritten as:

$$
x_{0 j}=\sum_{k=1}^{n+1} \Lambda_{k} \frac{D_{k, j}(A ; b)}{D_{k}(A)}, \quad j=1,2, \ldots, n
$$

where $\Lambda_{k}>0$ and $\sum \Lambda_{k}=1$.
Theorem 2.3 Let (1) be an inconsistent system. If matrix A of the system has the " H-property", there exists a subsystem of (1),

$$
\begin{equation*}
f_{k_{j}}(z)=0, j=1,2, \ldots, p \text { and } n+1 \leq p \leq 2 n+1 \tag{13}
\end{equation*}
$$

so that:

$$
\mathrm{P} A_{0}(A, b)=\operatorname{conv}\left\{z^{c}\right\}
$$

where $\left.\operatorname{conv} v z^{c}\right\}$ is the convex hull of all Cramer solutions z_{0} of the $n \mathrm{x} n$ subsystems of (13)
Proof. For $z_{0} \in \operatorname{P} A_{0}(A, b)$, if we apply Theorem 2.2, we conclude that relation (12) is true. Let $\Upsilon \in \mathbf{C}^{n}, \Upsilon=\left(\Upsilon_{1}, \Upsilon_{2}, \ldots, \Upsilon_{n}\right)$ be a Cramer solution of the system $f_{k_{j}}=0(j=1,2, \ldots, n)$, i.e.:

$$
\Upsilon_{j}=W_{j}\left(k_{1}, k_{2}, \ldots k_{n} ; A ; b\right):=\frac{D_{j}\left(k_{1}, k_{2}, \ldots, k_{n} ; A ; b\right)}{D\left(k_{1}, k_{2}, \ldots, k_{n} ; A\right)}, \quad j=1,2, \ldots, n .
$$

System $f_{k_{j}}=0(j=1,2, \ldots, n)$ is a subsystem of system (13) and we have also:

$$
z_{0 j}=\sum \Lambda_{k_{1}, k_{2}, \ldots, k_{n}} W_{j}\left(k_{1}, k_{2}, \ldots k_{n} ; A ; b\right),
$$

so that

$$
z_{0}=\sum \Lambda_{k_{1}, k_{2}, \ldots, k_{n}} W\left(k_{1}, k_{2}, \ldots k_{n} ; A ; b\right)
$$

where

$$
\begin{gathered}
W\left(k_{1}, k_{2}, \ldots k_{n} ; A ; b\right):= \\
\left(W_{1}\left(k_{1}, k_{2}, \ldots k_{n} ; A ; b\right), W_{2}\left(k_{1}, k_{2}, \ldots k_{n} ; A ; b\right), \ldots, W_{n}\left(k_{1}, k_{2}, \ldots k_{n} ; A ; b\right)\right)
\end{gathered}
$$

and thus, $z_{0} \in \operatorname{conv}\left\{z^{c}\right\}$. Conversely, if $z_{0} \in \operatorname{conv}\left\{z^{c}\right\}$, then z_{0} is an open convex combination of Cramer solutions $W\left(k_{1}, k_{2}, \ldots k_{n} ; A ; b\right)$ of subsystems having the form $f_{k j}=0(j=1,2, \ldots, n)$. Consequently, (12) holds, and thus, by Theorem 2.2, $z_{0} \in \mathrm{P} A_{0}(A, b)$.

In [1] we saw (see also Theorem 1.2 in the first section of this article) that the least square solution and the best approximate solution of the system (1) (with A having the " H-property") are in fact two special cases of the Pareto minimal solutions of the same system. In other terms, using the notations defined above, this means that for a certain choice of weights $\Lambda_{k_{1}, k_{2}, \ldots, k_{n}}$ in formula (12) we can obtain the two above mentioned approximate solutions. We will look now at the least square solutions of system (1), which characterize them.

Obtaining the least square solution of system (1) means minimization of function

$$
\mathrm{F}(f)=\sum_{k=1}^{m} f_{k}(z)^{2}=\sum_{k=1}^{m} f_{k}(z) \bar{f}_{k}(z)
$$

Hence, here we have to solve system:

$$
\begin{equation*}
\frac{\partial f}{\partial \bar{z}_{j}}=2 \sum_{k=1}^{m} f_{k}(z) \bar{a}_{k j}=0, \quad j=1,2, \ldots, n \tag{14}
\end{equation*}
$$

But system (14) is similar to (8) ($p=m$ and instead of z_{0} we have here z) with $d_{1}=d_{2}=\ldots=$ $d_{m}=1$. We have proved the following result:

Theorem 2.4. If matrix A of system (1) has the " H-property", then $z_{0} \in \operatorname{P} A_{0}(A, b)$ is the least square solution for system (1) if and only if $d_{1}=d_{2}=\ldots=d_{m}=1$ in relation (8), which means that:

$$
\begin{equation*}
z_{0 j}=\frac{\bar{D}\left(k_{1}, k_{2}, \ldots, k_{n} ; A\right) D_{j}\left(k_{1}, k_{2}, \ldots, k_{n} ; A ; b\right)}{\left|D\left(k_{1}, k_{2}, \ldots, k_{n} ; A\right)\right|^{2}}, \quad j=1,2, \ldots, n \tag{15}
\end{equation*}
$$

In a similar way it is possible to characterize the best approximation solution of system (1). Formula (15) is a synthetic form of the least square solution of an inconsistent system.

References

Caristi, G.: Pareto solutions of an inconsistent system, "Applied Mathematical Sciences" 2010, Vol. 4, No. 10.

Fekete, M., Walsh, J.L.: On restricted infrapolynomials, Proceedings of the National Academy of Sciences, U.S.A., 37 (1951).

Marusciac, I.: Infrapolynomials and Pareto optimization, Mathematica (Cluj), 22 (45), (1980), No. 2.
Remez, E.I.: Basis of the Numerical Methods in Tchebycheff's Approximation, Izd. Kiev, 1969.

Giuseppe Caristi
Ersilia Saitta
University of Messina - Italy
Department S.E.A.M

Summary

Starting from the previous papers G. Caristi (Pareto solutions of an inconsistent system, Applied Mathematical Sciences, Vol. 4, 2010, No. 10) and M. Fekete, J.L. Walsh (On restricted infrapolynomials, Proceedings of the National Academy of Sciences, U.S.A., 37 (1951)), in this paper we
show some new results and remarks concerning the last square solutions and we consider the best approximation of the solution of an inconsistent system ${ }^{2}$.

PONOWNIE NA TEMAT PARETO OPTYMALNYCH PRZYBLIŻEŃ
 ROZWIĄZAŃ UKLADÓW SPRZECZNYCH

Streszczenie

W niniejszym artykule, opierając się na pracach G. Caristi (Pareto solutions of an inconsistent system, Applied Mathematical Sciences, Vol. 4, 2010, No. 10) i M. Fekete, JL Walsh (On restricted infrapolynomials, Proceedings of the National Academy of Sciences, U.S.A., 37 (1951)), pokazano nowe wyniki i uwagi dotyczące metody najmniejszych kwadratów oraz najlepsze, według autorów, przybliżenie rozwiązania sprzecznego układu.

[^1]
[^0]: ${ }^{1}$ I. Marusciac: Infrapolynomials and Pareto optimization, Mathematica (Cluj), 22 (45), (1980), No. 2, pp. 297-307; E.I. Remez: Basis of the Numerical Methods in Tchebycheff's Approximation, Izd. Kiev, 1969.

[^1]: ${ }^{2}$ AMS-2000 Mathematics Subject Classification: 49K10.

