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abstract: In this paper we have studied the existence and the nature of long-range relations between the main 
indices of three European stock markets: in Frankfurt, Vienna and Warsaw. The first two of them are devel-
oped markets, while the last one is seen as an emerging market. On the basis of daily data from the period 
2003–2014 we analysed the I(1)/I(0) co-integration of market indices. The results of this commonly applied 
technique are compared with the results of the more flexible fractional co-integration analysis.
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Introduction

In the last few decades, globalization has led to increasing connections between equity 
markets in various parts of the world. These connections have caused a co-movement and 
correlation of stock prices. The existence of such connections is important, because it can 
lead to spillovers and contagion effects. The issue of the cointegration of European stock 
markets has been widely analysed in the literature. For example, Fratzcher (2002) indicates 
the increasing integration of equity markets in the Euro zone. This observation is also con-
firmed by Adam et al. (2002). On the other hand, the integration of emerging European 
equity markets is not so obvious. Capiello et al. (2006) indicate that the degree of integration 
with developed markets depends on the size and capitalization of a market. Similar results 
are reported by Yusupova (2005). Quite different results were obtained by Mrzygłód (2011). 
On the basis of monthly data she proves a weak cointegration between emerging European 
markets. Only Polish and Hungarian stock markets can be seen as cointegrated. Moreover, 
Mrzygłód (2011) does not confirm the existence of the cointegration between emerging and 
developed European stock markets. However, Czupryna (2013) indicates that the analysis of 
cointegration of stock markets is sensitive to the construction of market indices. Significant 
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cointegration of the Warsaw Stock Exchange and the Frankfurt Stock Exchange is observed 
when the WIG20 is replaced in the analysis by the WIG20TR. 

In this paper we examine the cointegration between Austrian, German and Polish stock 
markets. These are very different stock markets. The Frankfurt Stock Exchange is one of the 
largest stock markets in Europe. Its capitalization is about ten times greater than the capi-
talization of stock markets in Vienna and Warsaw. The Vienna Stock Exchange, similarly to 
the FSE, is a developed market. However, its capitalization is similar to the capitalization of 
the Warsaw Stock Exchange. Both of them are among the largest stock markets in Central 
and Eastern Europe.

We have extended previous works about the relationships between European stock mar-
kets by applying the concept of fractional cointegration. This allows us to describe the re-
lationships between the stock markets in Vienna, Frankfurt and Warsaw more accurately. 

The rest of the paper is as follows. In the next section we briefly describe co-integration 
with integer orders. Section two contains basic information about fractional integration and 
co-integration. The data used in the analysis is described in Section three. Section four 
contains a presentation of the main empirical results. A short summary concludes the paper.

1.  cointegration

The concept of cointegration was initiated by Granger (1981). According to him, two 
time series xt and yt are cointegrated of order (d, b) (denoted by CI(d, b)) if

1) xt and yt are integrated of order d (are I(d) processes);
2) there exists a constant β such that process εt = yt – βxt is integrated of order d – b (is 

I(d – b) process), with b > 0.
In practice, the most common is a cointegration of order (1, 1) when both processes xt 

and yt are unit-root nonstationary, while there exists their a stationary linear combination. 
There are two main methods of testing for the existence of a cointegration between 

nonstationary processes: the Engle-Granger two-step procedure (Engle, Granger 1987) and 
Johansen cointegration tests (Johansen 1988; Johansen, Juselius 1990).

In the Engle-Granger procedure we first test the existence of the unit root in xt and yt. 
This is generally made on the basis of an ADF test. Then, by the OLS, parameters of the 
model yt = α + βxt + εt are estimated. The final step is a unit-root test of the residuals εt. If the 
process εt is stationary, then xt and yt are cointegrated with the cointegrating vector [1, –β]. 
Otherwise, the cointegrating relation does not exist. 

The Johansen tests for a p-dimensinal vector time series Xt are based on a VAR represen-
tation of Xt. This gives a general VAR model with k lags:

 𝑋𝑋𝑡𝑡 = 𝐴𝐴1𝑋𝑋𝑡𝑡−1 +⋯+ 𝐴𝐴𝑘𝑘𝑋𝑋𝑡𝑡−𝑘𝑘 + 𝜇𝜇 +ΦDt + εt  (1)

the following VECM representation can be written:
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 𝛥𝛥𝑋𝑋𝑡𝑡 = 𝛱𝛱𝑋𝑋𝑡𝑡−𝑘𝑘 + 𝛤𝛤1𝛥𝛥𝑋𝑋𝑡𝑡−1 +⋯+ 𝛤𝛤𝑘𝑘−1𝛥𝛥𝑋𝑋𝑡𝑡−𝑘𝑘+1 + 𝜇𝜇 + 𝛷𝛷𝐷𝐷𝑡𝑡 + 𝜀𝜀𝑡𝑡  (2)

where П = П1 + … + П k – I and Гi = П1 – … – Пi – I for I = 1, …, k – 1. 

The rank r of the matrix П determines the existence of the cointegration between ele-
ments of Xt. It also determines the number of cointegrating relations. When r = 0, all the 
processes in Xt are I (1) and are not cointegrated. On the other hand, when r = p, then all 
the processes in Xt are I (0). Cointegrating relations between elements of Xt exist only when  
0 < r <p. 

The rank of П can be determined by testing the significance of its eigenvalues. Let λ1, …, 
λp are the eigenvalues of П written in ascending order (λ1 ≥ … ≥ λp). The two Johansen tests 
can be applied to establish the rank of П. These are the “λ – max” test and the “trace” test. 
The “λ – max” test verifies the null hypothesis of the significance of the individual k – th ei-
genvelue and the hypotheses about the rank of П are: H0: r = k and H1: r = k + 1. The “trace” 
test verifies the hypothesis of the joint significance of the first k eigenvalues and thus the 
hypotheses about the rank of П have the form: H0: r = k and H1: r > k. Johansen and Juselius 
(1990) provide critical values for the statistics in both tests. 

2.  Fractional integration and cointegration

In the analysis of the integration we do not have to restrict attention only to integer integra-
tion orders. We can also apply the concept of fractional integration which is more flexible.

A covariance stationary process is fractionally integrated with the integration order d if 
its spectral density function f(λ) satisfies: 

 f(λ) ~ cλ–2d     as   λ → 0+  (3)

where c is a finite positive constant and the symbol “~” means that the ratio of the left- and 
right-hand sides tends to be at the limit. When d > 0, the process exhibits a long memory 
and its autocorrelation function dies out at a hyperbolic rate (Granger, Joyeux 1980). The 
above definition holds for d < 0.5 when a process is stationary. However, it has been gen-
eralized also on non-stationary cases when d < 0.5. Fractionally integrated processes with 
the integration order d fill the gap between stationary I(0) processses and nonstationary I(1) 
processes.

There are several methods of estimating the fractional integration order d (called also 
a long memory parameter). The majority of them are semi-parametric methods based on 
log-periodogram regression (Geweke, Porter-Hudak 1983) or based on a modification of 
local Whittle methods (Shimotsu 2010). The advantage of semi-parametric methods is that 
they are based on the analysis of the spectral density function of the process for very low 
frequencies. Hence, these methods are robust for the short-term behaviour of the process 
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described by higher frequencies. Semi-parametric methods are also free of any problems 
due to model misspecification.

The development of the concept of long memory and fractional integration (Robinson 
2005; Shimotsu 2006, among others) has led to the extension of the cointegration definition 
to non-integer integration orders. We will consider the simplest case of the cointegration of 
two processes. Several definitions of fractional cointegration can be found in the literature 
(see for example Robinson, Marinucci 2001; Robinson, Yajima 2002). Because the previ-
ously mentioned definition of cointegration is not restricted to the integer orders of integra-
tion, the most common definition of fractional cointegration is as follows. Two fractionally 
integrated series xt and yt are cointegrated in order d if:

1) xt and yt share the same long memory, i.e. d = dx = dy = d;
2) there exists a constant β such that the process εt = yt – βxt has a long memory param-

eter dε such that dε < dx.
From the above definition it follows that the existence of the common integration order 

d of the two processes is a necessary condition for their fractional cointegration. When long 
memory parameters (dx, dy) are multivariate ELW estimators proposed by Shimotsu and 
Phillips (2005) then the null hypothesis H0: dx = dy can be tested by the statistic (Robinson, 
Yajima 2002)

 𝑇𝑇𝑥𝑥𝑦𝑦 =
𝑚𝑚0.5(�̂�𝑑𝑥𝑥 − �̂�𝑑𝑦𝑦)

√0.5(1 − �̂�𝐺𝑥𝑥𝑦𝑦2 (�̂�𝐺𝑥𝑥𝑥𝑥�̂�𝐺𝑦𝑦𝑦𝑦)⁄ ) + ℎ(𝑇𝑇)
  (4)

where  d̂x and  d̂y are estimates of the fractional integration orders of xt and yt, Ĝxx, Ĝyy, Ĝxy 
are diagonal and off-diagonal elements of the cross-spectral density matrix Ĝ at frequency 
zero, T is the length of data, h(T) and m are tuning parameters such that for ξ ∈ (0, 2]:

 
1
𝑚𝑚 + 𝑚𝑚1+2𝜉𝜉(ln𝑚𝑚)2

𝑇𝑇2𝜉𝜉 → 0 𝑎𝑎𝑠𝑠 𝑇𝑇 → ∞  (5)

and 

 ℎ(𝑇𝑇) +
(ln𝑚𝑚)𝑚𝑚0.5+𝜉𝜉 𝑇𝑇𝜉𝜉⁄ + (ln𝑚𝑚)2𝑚𝑚−1 6⁄

ℎ(𝑇𝑇) → 0 𝑎𝑎𝑠𝑠 𝑇𝑇 → ∞  (6)

Under some regularity assumptions (see Robinson, Yajima 2002) Txy the statistic has 
asymptotic standard normal distribution when xt and yt are not cointegrated. When xt and yt 
are cointegrated, then Txy tends to be zero.

The existence of the common long memory parameter is a necessary condition for frac-
tional cointegration, but it is not a sufficient condition. The existence of fractional coin-
tegrating relations can be analysed following two different semiparametric methodolo-
gies. The first (Shimotsu 2012) is similar to the two-step Engle-Granger procedure. The 
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exact local Whittle estimation of the fractional cointegration of the two processes proposed 
by Shimotsu (2012) involves the joint estimation of the cointegrating vector [1, –β] and long 
memory parameters of xt and the regression residuals εt. The second method, proposed by 
Robinson and Yajima (2002) (and developed further by Nielsen and Shimotsu, 2007) for 
the analysis of cointegration in a p-dimensional random process, is similar to Johansen’s 
procedure for CI (1, 1). It contains an estimation of a common long memory parameter d* 
of the time series under study. Then, the cross-spectral density matrix Ĝ (d*) is estimated 
at frequency zero.1 The rank  of Ĝ (d*) determines the number of fractional cointegration 
relationships between processes. Similarly to Johansen’s procedure, the dermination of rank 
r is based on the eigenvalues of Ĝ (d*). Let λ1 ≥ … ≥ λp are the eigenvalues of Ĝ (d*), then the 
rank estimate is defined as

 �̂�𝑟 = arg min
𝑢𝑢=0, …,  𝑝𝑝−1

𝐿𝐿(𝑢𝑢)  (7)

where

 𝐿𝐿(𝑢𝑢) = 𝑣𝑣(𝑇𝑇)(𝑝𝑝 − 𝑢𝑢)−∑𝜆𝜆𝑖𝑖
𝑝𝑝−𝑢𝑢

𝑖𝑖=1
  (8)

Definition of L(u) contains an additional tuning function v(T) such that

 𝑣𝑣(𝑇𝑇) + 1
𝑚𝑚1
0.5𝑣𝑣(𝑇𝑇) → 0 𝑎𝑎𝑠𝑠 𝑇𝑇 → ∞  (9)

The procedure of the determination of the rank of Ĝ (d*) is sensitive to the value of the 
bandwidth parameter v(T), thus we will apply a range of values of v(T) = m1

q with q = 0.25, 
0.35, 0.45 as indicated by Nielsen and Shimotsu (2007). In the same way, determination of 
the fractional cointegration rank can be also performed on the basis of the correlation matrix

 �̂�𝑃(𝑑𝑑∗) = �̂�𝐷(𝑑𝑑∗)−0.5�̂�𝐺(𝑑𝑑∗)�̂�𝐷(𝑑𝑑∗)−0.5  (10)

where �̂�𝐷(𝑑𝑑∗) = 𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖{�̂�𝐺11(𝑑𝑑∗), … , �̂�𝐺𝑝𝑝𝑝𝑝(𝑑𝑑∗)} .

Described above the semiparametric methods of the analysis of fractional integration 
and cointegration are robust to short-term properties of the analysed processes. However, 
they require the application of user-chosen parameters, such as m, m1, h(T) and v(T). Hence, 
to be more confident in the interpretation of the results, we performed an analysis for vari-
ous appropriate values of these parameters.

1 To ensure faster convergence, a new bandwidth parameter m1 is used in the estimation of Ĝ (d*).
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3.  data

The analysis in this paper concentrates on the dependence of Austrian, German and Polish 
stock markets. Each market under study is represented by its main index, namely: ATX 
(for the Vienna Stock Exchange), DAX (for the Frankfurt Stock Exchange) and the WIG20 
(for the Warsaw Stock Exchange). Originally, the WIG20 is denominated in PLN, while 
both ATX and DAX are denominated in euros. To reduce the impact of exchange rates, the 
WIG20 is also converted to euros. The analysis in this paper is based on natural logarithms 
of daily closing prices of the indices under study in the period from 2 January 2003 to 
31 December 2014. The period under study contains different market phases, particularly; 
it covers the period of the global financial crisis. Due to nonsynchronous trading caused by 
different holidays, the samples under study had different lengths. To provide a time series 
of the same length, the missing data were replaced by the last closing price before the gap. 
As a result, we obtained the samples of 3,056 logarithms of daily closing prices of the ATX, 
DAX and WIG20. 

4.  cointegration – empirical results

The necessary condition to consider CI (1, 1) cointegration between the time series is their 
nonstationarity. To test it we applied the commonly used ADF test. 

Table 1

Results of the ADF tests for ATX, DAX and WIG20

 
Regression with no intercept 
nor time trend Regression with an intercept Regression with an intercept 

and a time trend
ADF statistic p-value ADF statistic p-value ADF statistic p-value

ATX 0.60 0.81 –2.26 0.22 –2.16 0.51
DAX 1.44 0.96 –1.49 0.50 –2.27 0.46
WIG20 0.45 0.76 –2.18 0.24 –1.94 0.60

Source: author’s own computation.

The results of the performed tests with different hypothesis are presented in Table 1. 
Subsequent columns contain the values of the test statistics and p-values for the ADF test 
without constant, with a constant and with a linear time trend. The null hypothesis about 
the existence of the unit root cannot be rejected in any of the cases. Thus, all of the three 
indices under study are nonstationary and the existence of cointegrating relations between 
them can be analysed.

The existence of the pairwise cointegration between the indices under study was ex-
amined by both the Engle-Granger and Johansen procedures. Table 2 presents the values 
of statistics in trace tests and λ – max tests for each pair of the indices. Because in the each 
case we consider a pair of time series, then only the existence of zero (r = 0) or one (r = 1) 
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cointegrating relationship is examined. The three last columns contain critical values for 
each test. A comparison of the test statistics and the critical values indicates that only the 
ATX and WIG20 can be seen as being cointegrated – the null hypothesis that there is no 
cointegration between them is rejected by both tests at least at a 5% level. The results in Ta-
ble 2 indicate that the two other pairs (ATX – DAX and DAX – WIG20) are not cointegrated 
CI (1, 1). These results are also confirmed by the two-step Engle-Granger procedure where 
only residuals from the regression of the WIG20 on the ATX are stationary.2 

Table 2

Results of the Johansen cointegration tests

r ATX  – DAX ATX – WIG20 DAX – WIG20
Critical values
10% 5% 1%

Trace test with 
a constant

1 2.61 6.39 1.92 7.52 9.24 12.97
0 11.65 24.86*** 7.88 17.85 19.96 24.6

λ – max test with 
a constant

1 2.61 6.39 1.92 7.52 9.24 12.97
0 9.03 18.47** 5.96 13.75 15.67 20.2

*, **, *** – denote significance at a 10%, 5% and 1% level, respectively.

Source: author’s own computation.

We begin the analysis of fractional cointegration between the ATX, DAX and WIG20 
with the estimation of individual long memory parameters. Table 3 presents values of the 
Exact Local Whittle estimators (Shimotsu and Phillips 2005) computed for various values 
of bandwidth parameter m satisfying (5).3 All of the estimates in table 3 are close to 1, which 
is in line with the common view of index prices as a unit root process. However, this fact 
should be formally tested. Shimitsu and Phillips (2005) proved that the ELW estimator has 
asymptotically a normal distribution with a standard deviation  1/ 2 m . For the bandwidth 
m = T 0.65 the standard deviation of the ELW estimator is equal to 0.037. It means that the 
fractional difference parameters of the ATX, DAX and WIG20 are insignificantly different 
from one another.

Table 3

The ELW estimates of long memory parameters

m ATX DAX WIG20
T 0.35 1.083 1.040 1.098
T 0.45 1.219 0.992 1.081
T 0.55 1.177 1.046 1.036
T 0.65 1.049 0.993 0.989
T 0.75 1.008 0.956 0.986

Source: author’s own computation.

2 The ADF test rejects the null hypothesis at a 1% level.
3 In the literature it is suggested to use m = T 0.65.
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The necessary condition for the fractional cointegration of a two time series is the equal-
ity of their integration parameters. Table 4 presents the results of a pairwise test of the 
existence of common fractional integration orders for the indices under study. The tests are 
based on Txy statistics given by (4). In order to take into account the possible cointegration 
between the analysed time series, the columns in Table 4 present the values of Txy statistics 
computed for various h(T). The value of Txy may by very sensitive to the choice of h(T), how-
ever, when the null hypothesis is not rejected for small h(T), it strongly suggests the equality 
of the integration orders. In each case reported in Table 4, the Txy statistic does not exceed 
critical values for a standard normal distribution. Hence, we can assume the equality of the 
integration orders in each pair of the indices under study. It indicates the possibility of the 
existence of the cointegration between the ATX, DAX and WIG20.

Table 4

Values of Txy statistics in the test of the equality of integration orders

h(T) = 1 : ( lnT ) h(T) = 1 : (ln T) h(T) = 1 : (ln2 T)

ATX – DAX 0.318 0.155 0.074
ATX – WIG20 0.286 0.129 0.057
DAX – WIG20 0.947 0.927 0.912

Source: author’s own computation.

We first analysed the fractional cointegration in each pair of the indices by the exact 
local Whittle estimator of fractional cointegration proposed by Shimotsu (2012). For each 
pair of the indices, we estimated a common fractional integration order dx of both time 
series, the parameter β in the regression yt = βxt + εt and the fractional integration order 
dε of the residual series εt. Additionally, to prove the significance of the cointegration, we 
tested the equality of the integration orders dx and dε. The relation is significant when dε is 
significantly smaller than dx. The results of this analysis can be seen in Table 5. In the case 
of all the pairs regression residuals have a significantly lower integration order than market 
indices. However, the significance levels are different. The difference for ATX and WIG20 
is significant at a 1% level, for ATX and DAX it is significant at a 5% level, while the differ-
ence between dx and de for DAX and WIG20 is significant at a 10% level. Hence, each pair 

Table 5

Results of the exact local Whittle estimation of fractional cointegration

dx dε β Txε statistic p-value

ATX – DAX 1.05 0.96 0.39 2.26 0.0120
ATX – WIG20 1.05 0.89 0.91 3.14 0.0009
DAX – WIG20 0.99 0.91 0.47 1.60 0.0545

Source: author’s own computation.
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of the indices is fractionally cointegrated and this relation is the most pronounced for the 
ATX and WIG20 where the linear combination of the indices has the integration order (0.89) 
which is also a significantly smaller than one. This observation is in line with the results of 
the Johansen tests presented earlier. 

In order to confirm the above results we additionally analysed the rank of cross-spectral 
density matrices Ĝ(d*) and the correlation matrices  ̂P(d*). For each pair, the procedure of rank 
determination contains the estimation of the common fractional integration order d* and the 
matrices Ĝ(d*),   P̂(d*). This estimation was performed with the new bandwidth parameter m1 
which must be smaller than the previously applied m. We considered m1 = T 0.6. The number 
of cointegrating relations r is computed from (7) and (8). In the definition of the function L 
we applied v(T) equal to m1

–0.25, m1
–0.35 and m1

–0.45. For each pair of the indices under study, 
for different values of v(T), Table 6 shows the values of the function L and the estimated 
number r of cointegrating relations. The 3 results computed on the basis of the cross-spectral 
density matrix Ĝ(d*) are shown in Panel A, while the results based on  P̂(d*) are in Panel B. 
The rank analysis, particularly based on matrix Ĝ(d*), supports the existence of fractional 
cointegration between the ATX, DAX and WIG20. For each pair and for each of the consid-
ered v(T) in panel A there exists one cointegrating relation. The results for the correlation 

Table 6

Results of the rank determination procedure

v(T) m1
–0.25 m1

–0.35 m1
–0.45

Panel A: analysis based on the cross-spectral density matrix Ĝ(d*)

ATX – DAX
L(0) 0.60 0.37 0.23
L(1) 0.30 0.19 0.11
r 1 1 1

ATX – WIG20
L(0) 0.60 0.37 0.23
L(1) 0.30 0.19 0.11
r 1 1 1

DAX – WIG20
L(0) 0.60 0.37 0.23
L(1) 0.30 0.19 0.11
r 1 1 1

Panel B: analysis based on the correlation matrix   P̂(d*).

ATX – DAX
L(0) –1.40 –1.63 –1.77
L(1) –1.53 –1.65 –1.72
r 1 1 0

ATX – WIG20
L(0) –1.40 –1.63 –1.77
L(1) –1.51 –1.62 –1.69
r 1 0 0

DAX – WIG20
L(0) –1.40 –1.63 –1.77
L(1) –1.43 –1.54 –1.62
r 1 0 0

Source: author’s own computation.
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matrix, however, depend on the v(T). When v(T) is large, one cointegrating relation is also 
indicated. 

Summary

In this paper we have shown the long-term relationships between prices of the ATX, DAX 
and WIG20 – the main indices of the stock exchanges in Vienna, Frankfurt and Warsaw. 
The analysis of the cointegration between these stock markets was performed on the basis of 
daily closing prices from 2 January 2003 to 31 December 2014. A two-step Engle-Granger 
procedure and Johansen tests confirmed the existence of a cointegrating relation between 
the ATX and WIG20. It indicates the existence of a strong long-term relationship between 
these major stock markets in Central and Eastern Europe. On the other hand, the ATX and 
WIG20 show no cointegration with the DAX.

The cointegration definition, however, is not restricted to integer integration or-
ders. When we allow non-integer (fractional) integration orders, then additional long-term 
relations between the stock markets under study were revealed. The analysis of fractional 
cointegration by methods used by Shimotsu (2012) and Nielsen and Shimotsu (2007) con-
firmed that the indices under study were all pairwise and fractionally cointegrated. How-
ever, the strongest relationship exists between the ATX and the WIG20. It shows that the 
application of the fractional cointegration analysis allows for a more adequate description of 
the long-term relationships between stock markets.
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zaLeżNoŚcI dŁugookReSowe PoMIędzy gIeŁdaMI w wIedNIu,  
FRaNkFuRcIe I w waRSzawIe

Streszczenie: W artykule zaprezentowano badanie występowania długookresowych zależności pomiędzy 
głównymi indeksami trzech europejskich rynków akcji: we Frankfurcie, Wiedniu i w Warszawie. Dwa 
pierwsze są rynkami rozwiniętymi, natomiast giełda w Warszawie jest ciągle postrzegana jako rynek rozwi-
jający się. Na podstawie dziennych danych przeprowadzono analizę występowania klasycznej kointegracji 
I(1)/I(0). Jej wyniki zostały porównane z wynikami uzyskanymi za pomocą analizy ułamkowej kointegracji.

Słowa kluczowe: kointegracja, ułamkowa kointegracja, rynek akcji, rynki wschodzące
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